Sophisticate Mechanisms and Unsolved Problems in the Resolution of Acute Gouty Arthritis

نویسندگان

  • Song-Chou Hsieh
  • Chia-Li Yu
چکیده

Only primates suffer from hyperuricemia and gout. Acute gouty attack with fulminate inflammation may recover within 7-10 days. The pathogenesis of monosodium urate monohydrate (MSU) crystal-induced acute gouty inflammation has been gradually elucidated. It is conceivable that MSU crystals possess both danger-associated pathological pattern (DAMP) and physical microcrystal properties that may activate innate immune cells IL-1 production and subsequent IL-6, IL-8 and TNF-α release from neighborhood cells. By contrast, the molecular basis of acute gouty inflammation resolution mostly remains unclear. Previous studiesdemonstrated that intracellular negative cytokine regulators CIS and SOCS-3 involved in the resolution of acute gouty inflammation in synergism with anti-inflammatory cytokine molecules (TGF-β1, IL-10 and soluble TNF-α receptors type 1 and 2). This commentary aims to dissect the potential mechanisms of induction and resolution of acute gouty attack. Besides, the unsolved problems in these issues are discussed. Characteristics of monosodium urate crystal (MSU) induced gouty arthritis (GA) Different from allantoin in avian species, the end-product of purine metabolism in human being is uric acid due to 2 non-sense mutations at codons 33 and 187 of urate oxidase during hominoid evolution [1,2]. The solubility of uric acid in the fluid milieu reaches a maximum of 6.8 mg/dl and becomes hyper-saturation status in plasma when over its solubility capacity. Many factors including [Na+], pH, temperature, oncostatic pressure, and in presence of nucleating factors/growth promoting factors may accelerate crystal formation in the joints, periarticular soft tissues, renal tubules or subcutaneous locations [3,4]. Thus, acute inflammation elicited by monosodium urate monohydrate (MSU) crystal deposition occurs usually in the low-temperature joints especially in the lower limbs. Usually, the acute inflammation in the joint of patients with acute attack may last a few days from 7-10 days. Then, spontaneous remission of the inflamed joint ensues after acute attack. Although gouty arthritis has been recognized since ancient age, the actual molecular basis of the acute attack and the subsequent spontaneous remission remain elucidation. In addition to the acute attack, part of the patients result in chronic tophaceous gout in the long-term course of hyperuricemia [5,6]. The etiopathogenesis of chronic gouty tophus formation also remain unclear. In 2011, Chen et al. [7] reported that not only intercellular anti-inflammatory cytokines TGF-β1 and IL-10, and soluble cytokine receptors TNF-α receptor type 1 (sTNF-R1) and type 2 (sTNF-R2), but intracellular cytokine negative regulators may involve in the spontaneous remission of acute gouty inflammation. The intracellular cytokine signaling inhibitors such as CIS and SOCS3 were considered the potent negative regulatory molecules for suppressing inflammatory cytokine-mediated acute gouty inflammation [8-12]. These findings are consistent with Martin et al. [13] that mononuclear phagocytes play a central role in both initiation and resolution of acute gouty inflammation. They showed that interplay between monocytes/macrophages and other elements of innate immune system including neutrophils and complement proteins are important. Despite a number of anti-inflammatory cytokines and endogenous cytokine signaling inhibitors have been found in the literatures, the connection between these cytokine inhibitors and resolution of acute gouty inflammation has never been reported. Figure 1 demonstrates a list of these potential cytokine inhibitors for controlling cytokine signaling. Interplay among complements, phagocytes, proinflammatory cytokines and inflammatory mediators contribute to the initiation of MSU crystal-induced acute inflammation As illustrated in Figure1, MSU crystals act dual roles in both danger-associated molecular pattern (DAMP) molecules and physical microcrystals in stimulating both mononuclearand polymorphnuclear phagocytes. It is demonstrated that innate immune cells express Toll-like receptor (TLRs) on the cell surface and contain inflammasomes in the cytoplasm. As DAMP molecules, MSU crystals bind to TLR2/4-CD14 complex and are phagocytosed by macrophages in the synovial membrane and neutrophils in the synovial joints [14]. The MSU-engulfed phagocytes transduce signals to activate NF-kB via adaptor protein MyD88 and finally mature IL-1β release [15]. The released IL-1β then binds to IL-1 receptor on the neighborhood phagocytes to induce a bunch of potent pro-inflammatory cytokines (TNF-α, IL-6, IL-8) release. As physical microcrystals, direct phagocytosis of complements (C1q, C3 and C5)and immunoglobulins-opsonized MSU crystals activates NLRP-3 inflammasome in macrophages. The produced IL-1β can further stimulate neighborhood innate immune cells via binding to IL-1 receptors to produce more and more proinflammatory cytokines [16]. Furthermore, IL-1β would stimulate COX-2 and 5-LOX pathways of Journal of Cytokine Biology Hsieh and Yu, J Cytokine Biol 2016, 1:2 Commentary Open Access J Cytokine Biol ISSN: JCB, an open access journal Volume 1 • Issue 2 • 1000107 the inflammatory cells to amplify acute inflammation with PMN recruitment and activation [17]. In conclusion, a rapid and vigorous inflammation is triggered by MSU crystals with orchestration of florid inflammatory cytokines, inflammatory mediators, and acute inflammatory cells accumulation in the joint. Figure 1: Illustration of two signaling pathways induced by MSU crystals in eliciting acute inflammation: (1) MSU crystals act as danger-associated molecular pattern (DAMP) molecule bind to surface TLR2/4–CD14 complex receptors and enter into phagocytes to activate NF− via MyD88 adaptor molecule. IL-1β is finally released. (2) Engulfment of MSU by phagocytes activates NLRP-3 inflammasome. Mature IL-1β is finally released from activated phagocytes. The released IL-1β then binds to surface IL-1 receptor on the neighboring innate immune cells to augment a number of pro-inflammatory cytokine production including IL-1β, TNF-α, IL-6 and IL-8. Arachidonic acid metabolites such as prostaglandins, prostacyclins, and leukotriene B4 may further augment acute inflammation. Induction of phenotype transformation, intracellular negative cytokine signaling regulators, and probably apoptosis in macrophages by MSU crystals involve in the resolution of acute gouty inflammation Acute gouty arthritis is generally self-limited and underlies spontaneous remission without 7-10 days. It has been demonstrated that low density lipoprotein (more specifically apolipoprotein B in the LDL) is elevated with acute inflammation [13,18]. This particular lipoprotein coats MSU crystals and renders the crystals noninflammatory to prevent further engulfment by phagocytes (Figure 2). In the mean time, the MSU-engulfed inflammatory macrophages (M1) transform to M2 phenotype that conversely produces antiinflammatory cytokines TGF-β1, IL-1ra or IL-10 [19]. On the other hand, the MSU-engulfed PMNs in synovial joints transform to apoptotic and NETotic cells are phagocytosed by M1 macrophages that eventually transform to M2 phenotype [20]. The highlight findings of Chen et al. [7] suggest that MSU-engulfed macrophages not only produced proinflammatory cytokines but spontaneously transcribed CIS/SOCS3 gene expression immediately to enhance TGF-β1 as well as sTNF-α receptors release by innate immune cells. It is also possible that MSU crystals-engulfed macrophages proceed to apoptosis. These sophisticate and potential mechanisms involving in acute gouty inflammation resolution are schemmed in Figure 2. Figure 2: Illustration of sophisticate molecular basis for terminating acute gouty inflammation by at least 4 different mechanisms: (1) MSU crystals are coated by ApoB or ApoE and become noninflammatory crystals that suppress engulfment by phagocytes. (2) MSU-engulfed macrophages transform from M1 to M2 phenotype that produce anti-inflammatory cytokines, TGF-β1 and IL-10. (3) MSU-engulfed neutrophils transform to apoptotic and NETotic cells are phagocytosed by macrophages that eventually become M2 cells. (4) Intracellular negative cytokine regulators CIS and SOCS3 are activated in MSU-engulfed macrophages to transcribe TGF-β1 gene expression (5) MSU-engulfed macrophages may probably lead to cell apoptosis. Unsolved problems in spontaneous remission of acute gouty inflammation Almost of the studies suggest that IL-1β production is the milestone and initiator for MSU-induced acute inflammation. However, Martin et al. [21] have demonstrated that the production of IL-6 by MSUstimulated peritoneal exudate macrophages is much higher than IL-1β or TNF-α. Chen et al. [7] also found that IL-1β production by MSUstimulated mouse macrophage cell line was less than TNF-α after 24h incubation. It is deduced that the levels and activities of IL-1β and TNF-α in gout synovial fluid can be counteracted by large amount of IL-1ra and soluble TNF-α receptor 1. Undoubtedly, the comparative Citation: Hsieh SC, Yu CL (2016) Sophisticate Mechanisms and Unsolved Problems in the Resolution of Acute Gouty Arthritis. J Cytokine Biol 1:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulation Design and In Vitro Characterization of Etoricoxib Cream for the Treatment of Rheumatoid Arthritis

Non-Steroidal Anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have come to play an important role in the pharmacologic management of musculoskeletal disorders. Clinical trials have established the efficacy of etoricoxib in Osteoarthritis, Rheumatoid Arthritis, Acute Gouty Arthritis, Ankylosing Spondylitis, Low back pain, acute postoperative pain, and pri...

متن کامل

Increased circulating Th22 cells in patients with acute gouty arthritis

BACKGROUND T-helper 22 (Th22) cells are involved in host immunity against pathogen invasion and have been implicated in the pathogenesis of inflammatory diseases. However, the roles of Th22 cells in acute gouty arthritis remain unclear. METHODS A case-control study was employed to illustrate the clinical significance of Th22 cells in acute gouty arthritis. In this study, 27 patients with acut...

متن کامل

Post-streptococcal acute glomerulonephritis complicated by gouty arthritis: a case report

Gouty arthritis is uncommon in childhood and adolescence. On the other hand, there has been no report of cases with development of gouty arthritis with post-streptococcal acute glomerulonephritis (PSAGN) in pediatric patients. Here we report the case of a mildly obese 12-year-old boy with PSAGN complicated by gouty arthritis of the left first metatarsophalangeal joint. On follow-up, it was conf...

متن کامل

Patient risk factors and adverse drug interactions in the treatment of acute gouty arthritis in the elderly: a case report

INTRODUCTION Non-steroidal anti-inflammatory drugs and corticosteroids are both used in the treatment acute gouty arthritis and may adversely interact with colchicine. Gastrointestinal toxicity of colchicine is dose-dependent and can be aggravated by drug-drug and drug-patient interactions. CASE PRESENTATION Colonic perforation associated with second-line administration of colchicine for acut...

متن کامل

Finger pad tophi in a patient with Raynaud phenomenon

MSU: monosodium urate ULT: urate-lowering therapy INTRODUCTION The natural history of gout includes 4 progressive stages (asymptomatic hyperuricemia, acute arthritic attacks, intercritical gout, and chronic gouty arthritis). Asymptomatic hyperuricemia is characterized by elevated serum urate. Deposition of monosodium urate (MSU) crystals in articular and periarticular tissues then instigates ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016